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Theeffectoftheinitialconditionitthejetexit onthedo_ evolution,particularlywithinthepotential
cornlength,werenumericallymveafigat_daswellaswithavailableexperimen_data.Inordertoselectmost
dependablecompmafionalmodelfortl_presentnumericalexperiment,acomparativestudyhasbeenperformed
with_fferentmtbulenc_modelsatk-elevel,anditwas foundthatthek-_-'fmodelyieldssuperiorprediction
accuracyoverotherconventionalmodels.The caleulau_dresultsshowthatthepotentialcon: |ength and the
spre_lingmtctheinitialmixinglayerart:depcmdenton thcin.iO_llenff_ scaleaswellast_ m.,-bulemkineticenergy
atthejetexit.Sucheffectoftheinitiallengthw,ale_s withhigl_-_g"dtialua'bulenc¢level.Anempirical
parameterhasbeendevisedtocoUap__ calculateddam ofthepotentialcorelengthandthespreadingratewith
variousinitialconditionsontoasinglecurve.

:, Introduction

It is well known that the potential core length, the
spreading ram and the asymptotic peak turbulence intensity
vary widely from experiment to experiment in the jet initial
region) _ Husaln and Hussain _ showed experimentally that the
boundary layerstate,laminaror turbulent,themomentum
thicknessand thefluctuationlevelintheinitialboundarylayer
at the jet exitwere importantfactorswhich govern the
downstream jetdcvclopmem. Gutmark and He4 found that
'suchscatterof the experimentaldatastemsfrom spatially
coherentdisturbancesinindividualfacilities.They considered
theinitialinstabilityfr_uency asone oftheimportantinitial
conditionsaffectingthejetevolution.

Inadditiontotheconditionof theinitialboundary layer,
however, sincethe jetexitflow fieldiscomposed of the
boundary layerneartheinn_ walland thecoreflow inthe
cenwalregion,theturbulentstareoftheinitialjetcoremust
alsoaffectthedownstream jetevolutionprocess.Turbulent
intensityina laboratoryjetistypically0.5% or less,whilc
thosein practicalturbojetand turbofanengineshave been
reportedto be between 3% and 15%.s Thus,in the initial
regionofthejetflow,themixinglayerand theturbulentcore
shouldinteractwitheachother.Iftheleveloftheinitialcore

turbulenceislow,theeffectoftheinteractionmay bcsmallor
negligible.However,ffitissufficientlyhigh,theflowfieldin

the initialregion shouldbe re_ardedas a complex flow
accordingtoBradshaw'scatcgory.-

Vlasov et al.7 reportedthatthe potentialcore length
significantlydecreaseswithincreasinginitialcoreturbulence.
More elaborateexperimentwas performedby Raman etal.s
who kepttheexitmean velocityprofileand theboundarylayer
statenearlythe same,butvariedthecoreturbulentintensity
between0.15% and 5% by usingvariousturbulencegenerating
grids.From thevariationofthemean velocityalongthejet
centerline,theyconcludedthattheturbulentintensityinthe
initialcore has only smalleffecton the jetevolution.
However, consideringthatthefreestreamlengthscaleisan
importantparameterfor thedevelopmentof the turbulent
boundary layer,which has been vividlydemonstratedby
Hancock and Bradshaw s, the length scaleof the core
turbulenceshouldbc consideredasan additionalcontrolling
parameter for the downstream jet development.
Unfortunately, however, experimental data of the initial length
scale or dissipation rate ax_ almost unavailable from published
reports.Ther=fom, in the presentstudy,a computational
analysisiscarriedouttosystematicallyinvestigatetheeffects
of the turbulent intensityandthelength scaleintheinitialcore
regionon theinitialdevelopmentofa turbulentjetflow.
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Since most previouscomputationalstudieshave been
concenn'atedon theflow fieldintheself-preservingregion,
thoseon thejetinitialregionam onlyscarcelyfoundinopen

literatures.Islamand Tucker_computedtheturbulentflowof
a jet initialregionby a revisedmixing length model.

Meanwhile,computationalturbulencemodelssuchask-eand
Reynolds sn'_ssmodels have serious"anomaly problems"

when theyareappliedtocomputeturbulentfreeshearflows:
"round-jet / plane-jet anomaly "l° and 'plane-wake I plane-jet
anoma/y "1_. Recently, Cho and Chung _2developed a new k-

e-y model and made considerable improvement in the
prediction accuracy for free shear flows in their similarity
regions.

Inthepresentstudy,firstly,thmcvariantsofk-emodel and

thenew k-e-7model were @plied totheinitialregionofthe

round and planejetstoprove thatthek-E-ymodel ismore

reliablethanothermodels. Secondly,usingthe k-e-?model
the effectsof theinitialcoreturbulence,i.e.the turbulent
kineticenergy,and thedissipationrateor lengthscaleare
systematicallyinvestigated,and theresultsarccompared with
available experimental data in the initial jet region.

Computational Models

In order to numerically examinethe initial jet evolution
process which exhibits quite complex nature of turbulence, a
dependable computational model must be employed. As is
well known, the k-e model has a number of variant forms
which has been formulated to remedy the vulnerable model
coefficients of the standard k-e model under certain
circumstances. One of such weaknesses in computation of
free shear flows has been expressed by a term "round-jet /
plane-jet anomaly ''_°. Specifically, the prr.dictions of a round
jet and a plane jet with the same model constants show
inconsistent results : If the model constants arc adjusted with
reference to the spreading rate of the plane jet, the computed
spreading rate of the round jet is higher than that of the plane
jet by as much as 25% whereas most experimental data
demonstrate that the round jet spreads slower than the plane jet
by about 15%.

Pope _° attributed the anomaly to the neglect of the mean
vortex stretching effect in the source term of the dissipation

equation, and introduced a vormx stretching invariant term X -

(k le)_j_ S_, where _ and S_ am the rate of mean rotation
and rate of mean strain tensors, respectively. Note that the

invariant X has a positive value in the round jet whereas it

vanishes in the plane jet. Thus, the modified form of k-e
model suggested by Pope is as follows :
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Here the model constants are ; C_,=0.09,o_=I.0, o,=1.3,

C¢_=1.45,C,,=1.90,C¢a=0.79.

Hanjalic and Launder _3 found that the rate of spectral

cncrg-ytransferacrossthe wave number space,which isnearly
equal to the dissipationrate,is significantlypromoted by
irrotationaldeformation which is associated with normal

strains.They alsonoted thatthe irrotationaldeformation has

larger value in the round jet than in the plane jet,which

stimulated them to propose the following variantof the k-e

model to solvethe "round-jet/plane-jetanomaly" problem.
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where C,=0.09, Ok= O,=1.0, C,,=i.44, Ca=l.90, Ce---4.44 ,

C_:-0.33.
Quite recently, Cho and Chung _ showed that, although the

(I) k z5 Ui 8U i _,
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Proposed model constants arc; C_:=0.09, C,_=0.1, ok= o_=

a£=l.0, C_1=1.44, Ca=1.92, Ct_=0.30, C_=0.10, C=1=1.6,

C ,=0.15, C=3=0.16.
='For more detail computation, the Reynolds stress model

may be utilized. However, it has been widely demonstrated

that when it comes to compute the simple free shear flows, the
Reynolds stress model yields similar prediction accuracy as

the k-e model TM, and no attempt has been made at modifying

the Reynolds stress model to solve the anomaly problem. For

this reason, it was not included in the present numerical
mvesnganon

Initial Conditions and Computational Method

It is assumed that the velocity profile at the exit consists of

two regions: a boundary layer near the inner wall and the core

layer in the central region. The initial boundary layer is

(3) further assumed to be in a fully developed turbulent state.

Thus, all turbulent parameters in that region can be estimated

by those of a fully developed turbulent boundary layer Over a

(4) flat plate, in practice, Husaln and Hussaln showed that the

mean velocity and the turbulefit_ntensity profiles in the initial

boundary layer at the jet exit are eiose to the flat plate data.

Therefore, we picked up the mean velocity profile and the

turbulent kinetic energy profile from Klebanoff's experiment

on a flat plate. And the dissipation rate data were calculated
by assuming a local equilibrium. There have been a large

number of jet experiments, however, unfortunately, we can not

find any experiment which measured the initial levels of the

turbulent k|neflc ener_ and thedissipati0n rate in the core

region, simultaneously. Therefore, we are managed to assume

above two variants improve the consistency in predicting the them within a physically reasonable range.

plane jet and round jet with varying degree of accuracy, such In the core region at the jet exit,_emean velocity, the

modifications do not yield any better solution to the "plane-jet turbulent kinetic energy and the dissipation rate were assumed
/ plane-wake anomaly problem" which was raised as another
computational anomaly through AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows in 1980Y With a

lengthy discussion about the role of intermitteney in the
mixing layer between the shear flow in the core region and the
ambient potential flow outside the jet boundary, they proposed

a new k-e-y equation model as follows ( See Cho and Chung _2
for details ) :

_-i---::x_L + PL= + Pk.n- e (5)
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+ Cr.3Z + C_4FJ (6)

Dy (l-y) + 7(I Y) "
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uniform, but with their magnitudes being different fordifferent

cases. In order to specify the relative magnitude between the

turbulent kinetic energy and the dissipation rate, i.e. the initial

eddy viscosity level kzle, in a physically realistic range, the

data from a grid-generated turbulence were adopted. Comte-

Beliot and C0rrsin _s p_sentedva_0_-_ta set Of the energy

decay of the grid turbulence. Fig.l represents the relations

between the length scale and the intensity of turbulence for

three cases in Comte-Beilot and Corrsin. From these relations,

a total of 20 pairs of data were used to specify the initial

turbulent kinetic energy and the dissipation rote in the core

region at the jet exit. Since the boundary iayer profiles are

nearly invariant within 50% of the boundary layer thickness, 5,

the initial profiles of the mean velocity, the turbulent kinetic

energy and the dissipation rate are smoothly connected in the

region 0.5_8. .........

The upwind finlte-dlfference procedure _ was used to solve

the system of the governing equations. Predictionsof the jet

flow reportedbelow were obtained by using 20_0cross-siream

nodeS, _00ruq'orm ia_l_e_s|h's]de tlie _teJdt dJ_eter and i50

stretched nodes outward. The jet exit mean velocity Ue was
20 m/see and jet exit diameter D or width H was l 0 cm, hence.

Reynolds number based on D or H was about 1.3 xl0 _. Initial

boundary layer thickness and the momentum thickness were

assumed 6mm and lmm, respectively. The turbulent kinetic
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Fig.l The initial conditions of the jet exit core region selected

fromComte-BellotandCorrsin: o ;R_-3.4xl(Y, t, ;R_
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energy and the dissipation rate were estimat_l by assuming u*

- 1.0 m/see.

Results and Discussion

Performance Tests of Computational Models

In the present investigation, the standard k-E model J7

modified k-e models by Pope, and Hanjalic and Launder, and

the k-E-'/model were applied to compute the initial flow field

of a plane jet and a round jet for a ease with ,¢ff'JU e -0.01,

Le/D-0.2 in Fig.l. Tabl¢.l represents the predicted potential

core lengths and spreading rates. The spreading rate can be

defined in various ways. The shear layer width at a certain

downstream location x is determined by either B J'Y0.:Yu., or

B,-yQ.:y,.gs, and the vorticity d'dckness _®defined by -Uo/(_

U/3y),_,where y_ , y,._ and Y,.,s indicate cross-stream

locations from the jet centerline where the local mean velocity

is 10%, 90% and 95% of the centerlin¢ mean velocity,

respectively. The symbol x p represents the potential core

length.

By comparing the predicted values in Table.l. it is

concluded that the k-e-y model provides the most reasonable

predictions for all jet parameters. Specifically, the prediction

of the potential core length is remarkably improved, which can

also be appreciated from Fig.2 and 3. In Fig.3. the

experimental data show that the turbulent kinetic energy at the

jet centerline increases monotonically in the potential core

region. However, all models failed to reproduce such

increase. From the exact turbulent kinetic energy equation, it

can be seen that, since there is no mean shear in the potential
core, the turbulent kinetic energy should simply decay. Thus,

it iS likely that either a certain unknown mechanism exist in

thecoreregionor the realflow had some initialshear atthejet

exit. Hussain and Husain _ explained that this occurs because

the core potential fluid is exposed to a 'massaging' effect of

motions in the mixing layer all around of, which argument

however cannot be supported by the governing field equation.

Nevenaheless, the k-e-7 model predicts very fairly the variation

of the turbulent kinetic energy along the centerline except in

the potential core region.

Fig.4 represents the mean velocity profile in similarity

coordinate at about the end of the potential core region.

Before the end of the potential core region, the initial mixing

layer attains similarity. This can be further clarified by the

fact that the shear layer thickness varies linearly J. In all

computations of the mean velocity, the turbulent shear stress

Table 1 Potential core lengths and initial spreading rates of jet flows

,_e/Ue=0.01, Le/D=Le/H=0.2 )

Flow Model and expertment

round

jet

dB 1 riB2 dS_

k-e-y 4.57D 0.163 0.175 0.141

Hanjalic and Launder's k-e 8.33 D 0.154 0.158 0.076

Pope's k-e 7.89 D 0.146 0.152 0.112

Standard k-e 7.21 D 0.155 0.162 0.128

experiment 4.90D TM 0.16-0.165 _ 0.158 - 0.202 _ 0.I12-0.175 _

plane

jet

k-e-_, 4.80H 0.163 0.177 0.155

Hanjalic and Launder's k-e 10.10 H 0.163 0.168 0.110

Standard k-E 8.74 H 0.151 0.159 0.136

experiment 4.50 H t9 0.155 - 0.180 _ 0.155 - 0.179 _
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and the turbulent kinetic energy, the k-e-y model outperforms

over the k-¢ models as can be seen in Figs.4,5 and 6. The

better performance of k-£-7 model in the core region( (y-yo,_)l

(yu.cyu.9)<0) may be arlributed to the correct representation of
the interaction between the mean velocity gradient and the

intermittency gradient by the k-e-7 model (see, for details, Cho
and Chung).

Effects of the Initial Conditions on the Downst_am

Evolution

In order to investigate the effects of the i_tial conditions on

the jet downstream development, the k-¢-7 model was utilized.
The initial conditions for the present computation were

selected from Fig.l as discussed previously. Fig.7 reveals that

the potential core length is smaller for higher initial turbulence

level, but that the centerlin-¢ mean Velocity decay rates after

the core region ate nearly the same for all cases. Computed k

variations along the centerline in Fig.8 agree well with

experimental data only after the core region. For initially high

turbulence level, experimental data of the turbulent kinetic

energy decay neat the exit mad then increase _monotonically,
bu_ the _6mputed one decays continuously in the potential

core. The discrepancy between these two observations is not

yet understood.

The variations of the potential core length and the

spreading rate with different initial conditions are represented

in Fig.9. Ifthe level-of the initial turbulent kinetic energy is

increased, the potential core length Is reduced and the
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the spreading rate.

spreading rate becomes large. Also, it can be seen that the

effect of the initial length scale is such that increasing initial

length scale shortens the potential core length and augments

the spreading rate. Moreover, such effect of the initial length

scale is magnified at increased initial turbulence level.

Consequendy, the mixing is promoted by increasing both the

initial turbulent kinetic energy and the initial length scale.

This is because larger core length scales penetrate further into

the mixing layer. Similar conclusion can be drawn from the

experiment of Hancock and Bradshaw', who carried out an

experiment of the effects of freestre.am turbulence on a flat

plate boundary layer.

Finally, an attempt is made at devising by wial-and-error to

collapse the calculated data into a single correlation. The

parameter found in this way is shown in Figs. 10(a) and (b),

where the number 80 Is an empirically determined constant.

All data nicely fall on a single curve as can be seen in figures.
This parameter was found to correlate the plane jet data too

(not shown in this paper).
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Conclusions

The effects of initial conditions at the jet exit have been

numerically inve_gatnd. As a most reliable computational

model, the k-E-y turbulence model has been selected by
comparing the prediction accuracies of various turbulence
models at k-c level. It was found that the standard form and a

couple of variants of the k-E model yield me ien81hy potential

core and lower spreading ra_e, whereas the k-e-y model
reproduce faithfully the nu'bulent flow field in the jet initial

region.
The calculated results show that the potential core length

and the spreading rate in the initial mixing layer are dependent

on the inidal length scale aswellas 0__n_theruth_ulent k!netic
e_-_e]&-e_C s-u_-_re= of the i_ai length ,c_e
increases with higher initial turbulence level. An empirical
parameter has _¢9 d_ev!_ m collapse the calculated data of
the potential core length and the spreading ram with various
initial conditions ohm a single correlation curve.
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